Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior
نویسندگان
چکیده
Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.
منابع مشابه
The Effects of Kainic Acid-Induced Seizure on Gene Expression of Brain Neurotransmitter Receptors in Mice Using RT2 PCR Array
Introduction: Kainic acid (KA) induces neuropathological changes in specific regions of the mouse hippocampus comparable to changes seen in patients with chronic temporal lobe epilepsy (TLE). According to different studies, the expression of a number of genes are altered in the adult rat hippocampus after status epilepticus (SE) induced by KA. This study aimed to quantitatively evaluate changes...
متن کاملNeurobehavioral changes in mice exposed to fast neutrons in utero.
Epidemiological studies have revealed that radiation causes brain development abnormalities in atomic bomb survivors exposed in utero. Rat and mouse studies have also shown that prenatal exposure to low-linear energy transfer radiation induces developmental brain anomalies. Because the effects of prenatal irradiation on adult behavior patterns remain largely unknown, the present study investiga...
متن کاملGeneration of global Spata19 knockout mouse using CRISPR/Cas9 nickase technology
Introduction: SPATA19 gene is expressed in developmental stages of testis and some organs, but so far its function has only been examined in the testis. In this study, we provided an effective pathway for the generation of these mice using new CRISPR / Cas9 nickase method while generating Spata19 knockout mice for future studies in other organs. Materials and Methods: CRISPR / Cas9 nickase plas...
متن کاملEngineered and construction of pDS132::∆virG as suicide vector for targeted gene deletion of virG from Shigella flexneri 2a in order to generation a live attenuated Shigella vaccine
Background & Objective: Shigella are Gram negative bacteria capable of inducing their entry into non-phagocytic cells via secretion of various effector proteins called invasion plasmid antigens (Ipas). The most important of them is VirG protein. Live attenuated Shigella vaccines have indicated promise in inducing protective immune responses in human clinical trials. In current situation, const...
متن کاملElectroacupuncture reduces chronic fibromyalgia pain through attenuation of transient receptor potential vanilloid 1 signaling pathway in mouse brains
Objective(s): Fibromyalgia pain is a mysterious clinical pain syndrome, characterized by inflammation in the brain, whose molecular mechanisms are still unknown. Females are more commonly affected by fibromyalgia, exhibiting symptoms such as widespread mechanical pain, immune dysfunction, sleep disturbances, and poor quality of life. Electroacupuncture (EA) has been us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015